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Abstract. A technique is introduced for analysing the leaming process of percep 
trons which continually select their own exampies (the most eficient lrai&ng aigo 
rithm yet devised). We predict a 42% reduction in the number of example. 'w-ted' 
in training an king perceptron, compared to the case in which example are ran- 
dom. Optimally stable sphelical perceptrons m a y  also he taught significantly more 
efficiently, and o w  results compare wel l  with an existing numerical simulation. 

1. I n t r o d u c t i o n  

An ongoing problem in the field of neural networks is how to train a system to perform 
a task using correct examples (associations of 'questions' and 'answers'). The simplest 
algorithm select the questions a t  random [I-51 and use a variety of methods to design 
a perceptron from them, but this becomes increasingly inefficient as the number of 
exa~.p!es is inczeaped becaixe m.os!. new quest,ions give no new information. A more 
intelligent algorithm would select new questions on the basis of what bad already been 
learnt so that the new information we would hope to obtain is maximized. One method 
of selection has been devised [6, 71, and applied to the simplest design of perceptron; 
the aim of this paper is t o  develop an analytical treatment of the learning process for 
more advanced perceptrons. 

We are concerned with the problem of learning a linearly separable Boolean func- 
tion T ,  which associates answer So with an N-vector question {Si): i = 1,. . . , N ,  
where Si E {-l,+l}. The function is defined by an N-vector B E RN so that 

So = T(S) = sign ( B .  S) (1) 

where we have defined the scalar product of two N-vectors z and y as 5 . y = xi z i+  Our pereepiron wi l l  be given jj qiiesiiofi-afi&afiiijwer eiamp:ej {(.",to], 
where (f E {-l,+l}, and p = 1,. . . , p .  The number of examples p will scale as ON 
and we will consider the limit N + CO with a constant. 

We will be using single-layer perceptrons defined by a single weight N-vector, J ,  
which gives an  output determined by 

S, = U(S) = sign ( J  . S) 

At this point we can classify two sorts of perceptrons. 'Ising' perceptrons allow J ,  to 
take only two values {+l, -1) and are typically used [4] to solve problems in which 
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E, only takes the two values {+l , - l} .  For problems in which Bi may take any real 
value, so that B E RN, we should also allow Ji to take any real value [l-31 and this is 
called a ‘spherical perceptron’. Our choice of J ,  given p examples, we call J(p) .  The 
simplest construction of a spherical perceptron is the Hebb rule 

An alternative approach is due to Gardner and Derrida [a], who search the whole 
N-dimensional J-space, looking for those choices of J(p)  which fulfil the equation 

where the minimum is taken with respect to all the patterns { E ” ) .  Any J(P) for which 
n > 0 will be able to correctly reproduce all the given answers (U(<”) = T(E’) V p ) ;  
the J(P) for which K is greatest has ‘optimal stability’, and algorithm exist which will 
construct this J, notably the MinOver algorithm [9]. 

One quantity of particular interest is the ‘generalization probability’, G(a) ,  which 
is the probability that a random state S gives the correct output (i.e. T(S) = U(S)). 
The generalization probability has been calculated [l] for rule (3) and has the following 
behaviour: G(a = 0) = 0.5, which means that a random question has probability f of 
being answered correctly; for higher 01, G increases as J ( p )  becomes closely aligned to 
B .  If the proportion of patterns presented becomes large, the system reaches perfect 
generalization, i.e. G(a -, CO) = 1. However, it bas been found [3] that if more than 
01 1 patterns are presented the optimal stablity rule for the spherical perceptron 
gives a higher G ( a )  than the Hebb rule. In fact as CY - CO, 1 - G ( a )  - a-’!’ for the 
Hebb rule and i - G(a)  - a-’ for the optimal perceptron. 

Rather different behaviour has been observed for an ‘king’ perceptron [4, 51. If we 
choose a value of K and we use a standard technique (replica theory, [lo]) to calculate 
the logarithm of the number of solutions to (4), the entropy of the answer, S(a,k ) ,  we 
find that for higher values of a than a critical line O ( K )  the entropy becomes negative, 
which is impossible since J(P) can take only a finite number of values (ZN). For 
a > 01,(0), the only J(P) which correctly stores all examples is B ,  and the argument 
of [li] suggests that  G(m)  jumps suddenly to 1, implying perfect generalization. It 
was  shown in [4] that u,(O) = 1.245; since at  least N examples are needed to specify 
the N bits of B ,  the minimum oi at  which the transition should occur is 1, and thus 
u.,mxv exampies jiS.iW) are ‘wasted’. 

We gain some insight into the process of learning from a diagram of a two- 
dimensional section of the N-dimensional space containing B (figure 1). In the figure 
A is the ( N  - 1)-dimensional hyperplane perpendicular to B ,  and Erand is a random 
example, which has the orthogonal hyperplane Y .  The output of pd with respect t o  
rule T is +1, if Erand and B lie on the same side of plane A. Thus knowing the value 
of T ( p d )  simply determines on which side of plane y vector B lies. In  order t o  
constrain B into a very small subspace, we require a large number of examples lying 
close to plane A. If we select examples randomly we must wait until sufficiently many 
with this property happen to occur. 

n .. 
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Figure 1. A section of the N-dimensional apace containing B ,  orthogonal to hy- 
perplane A. The vector Era"d is a random example in this space orthogonal to 
hyperplane Y .  

In [6] a method for speeding up the process was suggested. Figure 2 shows the 
same space, where we have marked J(P),  our best estimate for B after the presentation 
of p examples. We should therefore select our next question EP+' to lie in the plane 
2 (perpendicular to &)), so that < P + l  . B is minimized. This implies that we choose 
<p+' at  random but with the constraint 

in the limit of N - co. From (61 we know that the parameter zp ,  defined by 

has a distribution 

1 exp (- 2sin2(6,) ) 
p ( c p )  = a s i n ( 6 , )  (7) 

where we introduced 6, as 

coe(6,) = J ( p ) .  B E R(a) .  (8) 

Equation (8) also defines the order parameter R(a)  as the overlap between B and J .  
We have used the normalization J . J = B . B = 1. From figure 1 we see that 

(9) 
r9 1 

G(u) = 1 - 1 = 1 - - cos-'(R(a)) m m 
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Figure 2. A section of the N-dimensional space containing B. orthogonal to hyper- 
plane A. JP, orthogonal to hyperplane 2, is our best estimate for B after presenting 
p examples. The angle between JP and B is B P .  (P+' is chosen at random to lie in 
hyperplane 2. 

since it is the fraction of the N-dimensional space on the same side of planes A and 
2. 

When the results of this algorithm were evaluated [6] for the 'spherical' perceptron 
using the Hebb rule, it was found that the resultant C(w) was higher than with any 
known setting of J(P) using random examples. [6] also contains a numerical simulation 
for a spherical perceptron using the optimal stability rule which exhibits a further 
significant improvement. I t  is the purpose of this paper to develop a technique which 
produces an analytical expression for this result, and then to apply it to the Ising 
perceptron. 

2. Spherical perceptrons 

As usual we begin by considering the volume of {.I]-space satisfying (4) for any given 
c, which is 

and which shrinks to zero for any a as K -+ ~ ( a ) ,  the maximal stability. The order 
parameters .(a) and R(a) of the system will be found, as in is], from ( i n z j ,  where 
the average is taken over all the patterns which might he generated during the process. 
We perform the average using the replica method [E] and working with Z".  

Although we expect the angle Bp between J(P) and B to decrease as p increases, the 
hyperplane perpendicular to B is an ( N  - 1)-dimensional subspace in which we expect 



Selecting ezamples for perceptrons 117 

the component of J perpendicular to B to vary widely. Similarly the hyperplane 
perpendicular to J(P),  from which (P+' is randomly chosen, is (N - 1)-dimensional. 
Hence we make the ansatz that only correlations between the {(p} in the direction 
of B are of significance, and therefore that any (U satisfying (6) and (7) is equally 
likely to be realized. Thus we assume that the auerage over I"+' with constraint (5) 
is equivalent to the average with constraints (6) and (7), despite the fact that (6) and 
(7) do not themselves imply (5). This assumption was implicit in [6] .  

U-- m c: .,"" -14 +h.. "..- - C n m * &  --"- t C Y + 1 1  --&:-C..:-- I C \  :- 
&"I - 6 L ' F . .  .I , Y l l r  l l Y l l l " r l  "I y o u Y ~ L " '  ,< , ~ o " J ' J l r L g  ,U, ,a 

Thus the average of any function A over all the {("+'I satisfying (6) for a given I,, is 

But equation (7) gives us the probability distribution for x,, for every 0,. It follows 
that the operator which, working on InZ,  produces the average over the ( p  + 1)th 
pattern is 

Applying this result and performing the trace in the manner of [3] we obtain, using 
the notation of [3], 

where we have introduced 

We can now replace 
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where .$(nab, R,, a') E @ , , ( g a b ,  R,) when a' = p / N .  The error in making this replace- 
ment is not extensive and may thus be ignored in the N - 00 limit. 

The rest of the calculation proceeds in the manner of [3]: we assume replica sym- 
metry; perform the integrals over conjugate momenta using the saddle point method; 
take the n -+ 0 limit; and finally allow the volume in the J-space to shrink to zero by 
letting q + 1. We obtain as our final result the self-consistent equations for .(a) and 
R(a), in terms of the R(a') for a' < a: 

T L H Walkin and A Rau 

(18) 

where, as a shorthand, we have introduced the function 

T ( R ( a ) , ~ ( a ) , u , z )  s ( a ) - z J m - R ( a ) l u l .  (19) 

The region 7 of integration is given by T (R(a) ,  .(a), U, z )  > 0. 
The equations are very similar to those of [3], but the difference has an appealing 

physical interpretation. If we interpret U as a noise we find that it is Gaussian for 
every value of a' but decreases in width as R(a') increases (instead of remaining a 
constant width as in [3]). This corresponds to { E ' }  placing on average a more stringent 
constraint per example on B as increases. Numerical solution of equations ( i7 j  and 
(18) is somewhat difficult because to avoid integrating around a - 0, where K diverges, 
we must estimate how R behaves in this region. Our solutions are plotted in figure 3 
as line 1 with the vertical lines to show our estimate of precision, fO.O1, and with 
the numerical results [6] as dots for comparison; the agreement between results and 
analysis is excellent, well within the experimental error. The prediction using random 
examples is shown as line 2. A usual question when applying the replica method is 
whether the replica symmetric assumption is valid [lo]. In this case we believe that 
it is, just as in the original spherical model [8], and this belief is supported by the 
quality of agreement with the numerical results. 

Q To:-.- ..-..,.-..* 
Y. '3'UB yrlbryr'urlr 

Applying the same argument to the problem of Ising perceptrons, we have obtained 
an expression for the entropy 

m 

S = (InZ)< = ExtrR,,,g,p 2cosh(lf i+ 8 )  
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Figure 3. The generalization ability G(o) against m. Line 1 is the prediction of this 
paper. The dots show the results of B numerical simulation with N = 50 [6]. Line 2 
is the prediction using a random selection of examples [3]. 

where y = 1 for unselected examples, and y = d m  for selected ones. This 
form was derived in [4] with y = 1 and IC = 0, so that any J(p)  was chosen which 
correctly stored the p examples. We assume that,  as in [4], and as explained ahove 
in the introduction, there is a phase change to perfect generalization when S becomes 
zero. 

Figure 4 shows the consequences of this equation, and the inset is an  expanded 
version of the region of interest. Line 1 is the one derived in [4] with unselected 
examples using the ansatze q = R and f = g ( w e  have checked the validity of these 
ansatze by a search of the whole space); it shows a first-order transition to perfect 
generalization (C(a) = R = 1 )  at  a % 1.245 from R % 0.697 and G(o)  % 0.756. Line 
2 shows the optimal stability result, where at. each a the value of K is increased until 
S = 0; thus the two lines coincide at their endpoints. In general points on line 2 have 
p > R and f > g,  since enforcing optimal stability reduced the available volume in 
J-space, but not necessarily around B .  I t  is worth pointing out that line 2 marks the 
overlap just before the freezing transition which occurs as n is increased (when the 
available volume in J-space contains just one point). To find out the overlap with E 
of the state it freezes into (a line higher than 2) we would have to use a more subtle 
analysis, presumably with first step replica symmetry breaking; we know only that a t  
the end of line 2 the jump must be to perfect generalization. 

Line 3 shows the results if examples are selected hut optimal stability is not en- 
forced, K = 0. The phase transition to perfect generalization now occurs at (1 % 1.173, 
R % 0.661 and G ( a )  % 0.730, a 30% advance, compared to unselected examples, 
towards the theoretical minimum bound of a = 1. 

Our best result, line 4,  is obtained by a t  each step choosing the optimally stable 
J(P) and selecting the next example. On this occasion the transition to perfect gener- 
alization occurs a t  a % 1.145 and G(o) % 0.727, which is 41% closer to the minimum 
bound than learning using random examples. This represents an 8% reduction of the 
total number of examples required by what is already an efficient training algorithm. 
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0.511/, , , , , 
0' 0.2 0.4 0.6 0.0 1.0 1.2 

Figure 4. Selecting example for an Ising perceptron. Line 1, unseleaed examples, 
no optimization: line 2, unselected examples, optimal stability; line 3, selected ex- 
amples but no optimization; line 4, selected example and optimal stability; line 5, 
optimal stability w i t h  examples selected for a > 0.7. All lines show discontinuous 
transitions to G = 1.0 for 1.1 < a < 1.3. This interesting region is shown expanded 
M an inset. 

Note that it is the R(a)  in line 4 which is used iteratively to define 7 in (20); this 
corresponds to selecting examples a t  each value of a using a J just before the freezing 
transition. The RSB analysis, however, would straightforwardly allow ns to analyse 
the case of selecting examples after freezing. 

Line 4 lies below line 2 fo: a > 0. This, we suggest, is because line 4 marks the 
freezing transition between the available volume containing two points and containing 
one. Selecting examples would mean that the volume in which B is confined is bor- 
der,:d by fewer planes and so is less convex-in the sense that,  for the same volume, 
the average distance between two points is greater. Thus the average overlap with B 
is lower before freezing. As explained above, line 4 should not he taken as an indi- 
cation of the position of the line (not shown) marking the overlap of the state into 
which J freezes; we know only that this line touches G = 1 at  a 1.145 and thus, a t  
least here, is above the line marking the overlap of the frozen state using nnselected 
examples. 

I t  is interesting to observe that if we begin to select examples some way into the 
learning process then the improvement in efficiency is only very slightly reduced. Line 
5 shows the result of always enforcing maximum stability, but only selecting examples 
for a > 0.7. The first-order transition now occurs a t  a = 1.170, which is better than 
the result of always selecting examples but never enforcing maximum stability (line 

We expect that our  results are stable with respect to the breaking of replica sym- 
3). 

metry, since we are working in the region of a rather lower than the dA-T line 14). 
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4. Conclusion 

We have shown that by accepting a very plausible ansatz the problem of learning with 
continually selected examples can he treated, and our technique has been amply justi- 
fied by agreement with an existing numerical simulation for the spherical perceptron. 
In king perceptrons we have predicted an improvement in efficiency over the previous 
algorithm which takes us 41% nearer to the theoretical maximum hound. 

The technique of selecting examples has many natural further applications, of 
which the most obvious is to perceptrons with more sophisticated geometries than 
our simple one-layer machine. Networks with hidden layers are capable of solving 
problems in which the Boolean function T is not linearly separable (for example, 
the parity problem), and these perceptrons have recently been studied using random 
examples [12]. 

A further generalization would be to quite different sorts of learning problems. The 
perceptrons of [13], for example, learn to classify inputs according to their Hamming 
distance from a set of prototype patterns; selection of examples may well lead again 
to significant advances in efficiency. 
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